Pre-class Warm-up!!!
What is $\frac{\partial^{2} f}{\partial x \partial z}$ when $f(x, y, z)=x y+z \sin (x)$?
a. $\cos (x)$
b. $y+\sin (x)$
c. $\mathrm{z} \mathrm{cos}(\mathrm{x})$
d. y
e. None of the above

$$
\begin{aligned}
& \frac{\partial^{2} f}{\partial x \partial z} \text { means } \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial z}\right) \\
& \begin{aligned}
\frac{\partial^{2} f}{\partial z \partial x} & =\frac{\partial}{\partial z}\left(\frac{\partial f}{\partial x}\right)
\end{aligned}=\frac{\partial}{\partial z}(y+z \cos x) \\
& \quad=\cos x \quad
\end{aligned}
$$

3.1 Iterated partial derivatives

We have already been using these in showing that $\operatorname{curl}(\operatorname{grad}(\mathrm{f}))=(0,0,0)$ and $\operatorname{div}(\operatorname{curl}(F))=0$.

In Section 3.1 they define them and prove symmetry of the mixed partial derivatives using the mean value theorem.

HW questions are all: calculate these mixed partial derivatives, verify that this function satisfies this partial differential equation.
3.2 Taylor's theorem.

Question. What is the Taylor expansion of $f(x)=x^{\wedge} 2$ about $x=1$?
a. $f(x)=1-2(x+1)+(x+1)^{\wedge} 2$
b. $f(x)=1+2(x-1)+(x-1)^{\wedge} 2$
c. $f(x)=1-2(1-x)+(1-x)^{\wedge} 2$
d. $f(1+x)=1+2 x+x^{\wedge} 2$
e. None of the above.

The Taylor expansion of $f(x)=x^{2}$ about $x=0$ is x^{2}

We learn:

- What Taylor polynomials are.
- What a Taylor series is.
- What Taylor approximations are.
- The form of the terms in a Taylor polynomial.
- Taylor's theorem
- How to write the degree 1 and 2 polynomials in terms of the gradient and the Hessian matrix. derivative

We don't need to know

- The forms of the remainder terms

The Taylor expansion of $f(x)$ about $x=1$
hat the form

$$
\begin{aligned}
& f(l+h)=a_{0}+a_{1} h+a_{2} h^{2}+\ldots \\
& f(x)=a_{0}+a_{1}(x-1)+a_{2}(x-1)^{2}+\ldots
\end{aligned}
$$

The form of the coefficients in the Taylor series (1 -variable case)

Do this first for the expansion about 0 :

$$
f(x)=a _0+a _1 x+a _2 x^{\wedge} 2+
$$

We can compute the numbers a_{0}, a_{1}, \ldots.

$$
f(0)=a_{0}
$$

Apply $\frac{d}{d x}$ to both sides

$$
f^{\prime}(x)=a_{1}+2 a_{2} x+3 a_{3} x^{2}+\ldots
$$

Put $x=0: f^{\prime}(0)=a_{1}$
Apply $\frac{d}{d x}: f^{(2)}(x)=2 a_{2}+3 \cdot 2 a_{3} x+\cdots$
Put $x=0 \quad a_{2}=\frac{1}{2} f^{(2)}(0)$

$$
a_{n}=\frac{1}{n!} f^{(n)}(0)
$$

Next: the expansion about c:

$$
f(c+h)=a _0+a _1 h+a _2 h \wedge 2+
$$

Do the same but evaluate when $c+h=c$ i.e. $h=0$

$$
f(c)=a_{0}
$$

Apply $\frac{d}{d x}: f^{\prime}(c+h)=a_{1}+2 a_{2} h+\ldots$
At $h=0 \quad f^{\prime}(c)=a_{1}$
eft.

$$
a_{n}=\frac{1}{n!} f^{(n)}(c)
$$

The expansion about c:

$$
\begin{aligned}
f(c+h) & =a _0+a _1 h+a _2 h^{\wedge} 2+\ldots \\
& =\left(a _0+a _1 h+\ldots+a _2 h \wedge n\right)+R _n(c, h)
\end{aligned}
$$

$=$ Taylor polynomial of degree n

+ Remainder term of degree n
where $a_{-} i=\frac{1}{i!} f^{(i)}(c)$

Taylor's theorem:
$\mathrm{R} _\mathrm{n}(\mathrm{c}, \mathrm{h}) / \mathrm{h} \wedge \mathrm{n} \rightarrow 0$ as $\mathrm{h} \rightarrow 0$

When $n=1$ we get
$f(c+h)=f(c)+f^{\prime}(c) h+R_{1}(c, h)$
$f(c)+f^{\prime}(c) h$ is the best linear
approximate to f around c.
Also $\frac{R_{r}(c, h)}{h}=\frac{f(c+h)-f(c)-f^{\prime}(c) h}{h}$
$\rightarrow 0$ as $h \rightarrow 0$
is the definition of the derivative (equivalently)

Taylor series with more than one variable
Now $\mathrm{f}: \mathrm{R}^{\wedge} \mathrm{n}->\mathrm{R}$
and $c=\left(c _1, \ldots, c _n\right), h=\left(h _1, \ldots, h _n\right)$ lie in $R \wedge n$
The Taylor serve about c has the form $f(c+h)=a_{0 \ldots 0}+a_{10 \cdots 0} h_{1}+a_{01000} h_{2}+\cdots+g_{0 \cdots 01} h_{n}$
$+a_{20 \cdots 0} h_{1}^{2}+a_{020 \cdots 0} h_{2}^{2}$
$+a_{110 \cdot 0} h_{1} h_{2}+a_{1010 \cdots 0} h_{1} h_{3}+\ldots$
$+a_{30 \cdots \Delta} h_{1}^{3} \cdots \cdot e^{2} \cdot h_{2}^{3} h_{4}^{2}$ has coeff
What are the coefficients a? What are the coefficients a? $9_{0,3020 \cdots 5}$
Evaluate at $h=(0,0,0 \ldots)$ and then apply $\frac{\partial}{\partial x_{j}}$. Repeat.

$$
f(c)=a_{0 \cdots 0} \quad \text { Apply} \frac{\partial f}{\partial x_{1}}(c+h)=a_{10 \cdots 0}+2 a_{20 \cdots 0} h_{1}
$$

$$
+a_{110 \cdots 0} h_{2}+\cdots
$$

At $h=0$:

$$
\begin{aligned}
& +a_{110}-0 \\
= & \frac{\partial f}{\partial x_{1}}(c)
\end{aligned}
$$

$$
\begin{equation*}
a_{l_{1}, \ldots L_{n}}=\frac{1}{l_{1}!} \frac{1}{l_{\varepsilon}!} \cdots \frac{1}{l_{n}!} \frac{\partial^{l_{1}}}{\partial x_{1}^{4}} \cdots \cdot \frac{\partial_{n}}{\partial x_{n}^{i_{n}} f} \tag{c}
\end{equation*}
$$

Example: $\mathrm{n}=2$

$$
\begin{aligned}
& f\left(x+h_{1}, y+h_{2}\right) \\
& =f(x, y)+\frac{\partial f}{\partial x} h_{1}+\frac{\partial f}{\partial y}, h_{2} \\
& \text { constant } \\
& +\frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}} h_{1}^{2}+\frac{\partial^{2} f}{\partial x \partial y} h_{1} h_{2}+\frac{\partial^{2} f}{2 y^{2}} h_{2}^{2}
\end{aligned}
$$

+ higher germs.

$$
=f(x, y)+\delta f(x, y)\left(h_{1}, h_{2}\right)
$$

$+\frac{1}{2} \underline{h}^{\top} H \underline{h}+h i g h e r$ terms

We see the best linear approximation and the best quadratic approximation to f around c.

The Hessian matrix H

$$
\left.\begin{array}{l}
\text { The Hessian matrix }
\end{array} \begin{array}{l}
H=\left[\begin{array}{cll}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \frac{\partial f}{\partial x_{1} \partial x_{3}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \frac{\partial f}{\partial x_{2} \partial x_{3}} \\
\vdots
\end{array}\right]
\end{array}\right]
$$

Example: Find the first and second degree Taylor polynomials and the Hessian matrix for $f(x, y)=\sin (x y)$ at $c=(1, \pi / 2)$. Use these to approximate $f(1.1, \pi / 2)$.

